Detection of Displacement Vectors through Edge Segment Detection
نویسندگان
چکیده
منابع مشابه
Evaluating Edge Detection through Boundary Detection
Edge detection has been widely used in computer vision and image processing. However, the performance evaluation of the edgedetection results is still a challenging problem. A major dilemma in edge-detection evaluation is the difficulty to balance the objectivity and generality: a general-purpose edge-detection evaluation independent of specific applications is usually not well defined, while a...
متن کاملHaptic Edge Detection Through Shear.
Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. ...
متن کاملQuad-pixel edge detection using neural network
One of the most fundamental features of digital image and the basic steps in image processing, analysis, pattern recognition and computer vision is the edge of an image where the preciseness and reliability of its results will affect directly on the comprehension machine system made objective world. Several edge detectors have been developed in the past decades, although no single edge detector...
متن کاملQuad-pixel edge detection using neural network
One of the most fundamental features of digital image and the basic steps in image processing, analysis, pattern recognition and computer vision is the edge of an image where the preciseness and reliability of its results will affect directly on the comprehension machine system made objective world. Several edge detectors have been developed in the past decades, although no single edge detector...
متن کاملextremal region detection guided by maxima of gradient magnitude
a problem of computer vision applications is to detect regions of interest under dif- ferent imaging conditions. the state-of-the-art maximally stable extremal regions (mser) detects affine covariant regions by applying all possible thresholds on the input image, and through three main steps including: 1) making a component tree of extremal regions’ evolution (enumeration), 2) obtaining region ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2008
ISSN: 0916-8532,1745-1361
DOI: 10.1093/ietisy/e91-d.2.234